Balausa Vanadium Project

Competent Person’s Report

Prepared For:
Ferro Alloy Resources Limited

COMPETENT PERSONS:
Timothy Daffern, B Eng (Mining), MBA, FIMMM, FAusIMM, MCIM
Roger Rhodes BSc, MSc, MIMMM

CONTRIBUTING CONSULTANTS:
GBM Minerals Engineering Consultants Limited
Geo Mineral Resources Limited

Compiled By:

GBM Project Number: 0551
Document Approval

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by Consultant</td>
<td>Tim Daffern</td>
</tr>
<tr>
<td>Checked by Process Engineer</td>
<td>James Buchanan</td>
</tr>
<tr>
<td>Checked by Principal Process Engineer</td>
<td>Chris Stinton</td>
</tr>
<tr>
<td>Approved by Competent Person</td>
<td>Tim Daffern</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Rev</th>
<th>Reason</th>
<th>Prepared</th>
<th>Checked</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/03/2017</td>
<td>0</td>
<td>Issued as final</td>
<td>TD</td>
<td>JB, CS</td>
<td>TD</td>
</tr>
</tbody>
</table>

DISCLAIMER:

This report was prepared for Ferro Alloy Resources Limited by GBM Minerals Engineering Consultants Limited (GBM) and Geo Mineral Resources Limited (GMR). The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in GBM’s and GMR’s services, based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. Any use of this report by any third party is at that party’s sole risk.
TABLE OF CONTENTS

SECTION 1 SUMMARY ...16
 1.1 Project Background ...16
 1.2 Geology ...17
 1.3 Resources ...17
 1.4 Metallurgy and Mineral Processing ...19
 1.5 Mining Operation ...20
 1.6 Infrastructure ..20
 1.7 Environmental ..21
 1.8 Logistics ..21
 1.9 Financial analyses ...22

SECTION 2 INTRODUCTION AND TERMS OF REFERENCE ...24
 2.1 Company Background ..24
 2.2 Non-Technical Summary ...25
 2.3 Competent Persons ..29

SECTION 3 PROJECT DETAILS ..31
 3.1 Location ..31
 3.2 Access ..32
 3.3 Topography and Climate ..33
 3.4 Infrastructure ...35
 3.5 Mineral Rights and Permitting ...35

SECTION 4 MINERAL RESOURCE ESTIMATION ...38
 4.1 Introduction ..38
 4.2 Exploration ..42
 4.3 Historical Resources and Reserves ...48
 4.4 Geology and Mineralisation ...59
 4.5 Drilling, Sampling and Assaying ..87
4.6 Quality Assurance and Quality Control ..99
4.7 Sample Database ..124
4.8 Geological Interpretation and Modelling ...130
4.9 Exploratory Data Analysis ..133
4.10 Variography ..147
4.11 Geological Block Modelling ...151
4.12 Grade Estimation Primary Zone OB1 ...153
4.13 Grade Estimation for the Oxide Zone ...157
4.14 Validation of Grade Estimates ..157
4.15 Resource Classification ...162
4.16 Resource Statement ...163
4.17 JORC Exploration Targets (OB2, OB3, OB4 and OB5)169
4.18 Oxide Exploration Resource ...171
4.19 GKZ Reserve discussion ..172
4.20 Conclusions and Recommendations ...173

SECTION 5 MINING ...174
5.1 Introduction ...174
5.2 Mining Planning ..174
5.3 Geotechnical Parameters ..176
5.4 Hydrological Parameters ..176
5.5 Mining Method ...177
5.6 Drilling and Blasting ...179
5.7 Operational Ore Grade Control / Waste Determination179
5.8 Overburden / Waste Removal ..179
5.9 Mining Fleet ...180
5.10 Labour Requirements ..181
5.11 Mining Services ..181

SECTION 6 METALLURGICAL TESTWORK ...182
6.1 Introduction ..182
6.2 Pre 2008 Metallurgical Testwork ..186

SECTION 7 METALLURGY AND MINERAL PROCESSING189
 7.1 Introduction ..189
 7.2 Mineralogy ..189
 7.3 Mineral Process Plant ..190
 7.4 Metallurgical Recovery During Operations ..201
 7.5 Engineering Design for 1 Mtpa Expansion ...201
 7.6 Product Specification ..202

SECTION 8 INFRASTRUCTURE ..209
 8.1 Introduction ..209
 8.2 Railway Siding ..209
 8.3 Offices / Buildings / Laboratory ...209
 8.4 Workshop and Stores ..210
 8.5 Diesel Supply ..210
 8.6 Electricity Supply ..211
 8.7 Water Supply ..211
 8.8 Camp ..212
 8.9 Road ...212

SECTION 9 ENVIRONMENTAL STUDIES AND SOCIAL & COMMUNITY IMPACT213
 9.1 Environmental Legislative Framework ...213
 9.2 Land Ownership ...215
 9.3 EIS Study ..215
 9.4 Fuel Handling and Storage ...217
 9.5 Fire Safety and First Aid ..218
 9.6 Mine Closure and Rehabilitation ...218
 9.7 Human Resources ..218
 9.8 Industrial Design Implication ...218

SECTION 10 FINANCIAL ANALYSIS ..219
 10.1 Background ...219
10.2 Capital Costs ... 220
10.3 Operating Costs .. 222
10.4 Financial Analysis Criteria ... 224
10.5 Assumptions and Exclusions .. 225
10.6 Financial Model Results ... 226
10.7 Sensitivities and Scenarios ... 227
10.8 Discussion ... 229

SECTION 11 FAR DEVELOPMENT STRATEGY 230
SECTION 12 BIBLIOGRAPHY .. 231
APPENDIX A. Assay certificates ... 233
 A.1 Assay Certificates – 1st Batch from Intertek 234
 A.2 REE Test Certificate Results from Intertek 240
 A.3 Karaganda Assay Certificate ... 246
APPENDIX B. Pre 2008 Metallurgical Testwork Listing 254
APPENDIX C. GKZ Reserve .. 257
LIST OF TABLES

Table 1-1: Schedule of Mineral Resources...18
Table 1-2: JORC Based Exploration Target (JORC 2004 Guidelines).................................19
Table 1-3: JORC Based Exploration Target (JORC 2004 Guidelines) - By-Products applied to Ore Bodies 2 to 5 (Primary Zone Only)..19
Table 1-4: 2014 GKZ Reserve Summary..19
Table 1-5: Main Aspects of Cash Flow Models..22
Table 1-6: Summary of Capital Requirements...23
Table 2-1: Approximate Expansion Timings..28
Table 3-1: Site Boundary Coordinates..36
Table 3-2: New Mining Allotment Coordinates...36
Table 4-1: Schedule of Mineral Resources..40
Table 4-2: JORC Based Exploration Target (JORC 2004 Guidelines).................................41
Table 4-3: JORC Based Exploration Target (JORC 2004 Guidelines) – By-Products applied to all Ore Bodies 2 to 5 (Primary Zone Only)..41
Table 4-4: Summary of the works conducted by S.G. Ankinovich from 1941 to 194742
Table 4-5: Summary of Works 1972 to 1973...44
Table 4-6: Drilling Proposal Summary..45
Table 4-7: Summary of Drillholes Completed ..46
Table 4-8: FAR Drilling Summary Results for OB1..46
Table 4-9: FAR Drilling Summary Results for OB2..47
Table 4-10: FAR Drilling Summary Results for OB3...48
Table 4-11: Official 1947 Reserve (GKZ) Summary..49
Table 4-12: 1947 Vanadium Pentoxide Ore Body Reserve Summary51
Table 4-13: Reserves as of 01.01.1947..52
Table 4-14: GKZ Confirmation of Off-Balance Reserves 1 January 199752
Table 4-15: 1973 Summary Reserves..53
Table 4-16: Reserve Update – 1947 & 1991 Comparison

Table 4-17: Vanadium grade at depth intervals 1990-1992 (OB1)

Table 4-18: Example of Reserve Blocks 1990–1991 OB1

Table 4-19: Stratigraphic Legend Table

Table 4-20: Chemical Composition of the Oxide Ore Horizon Ore Body 1

Table 4-21: Typical Composition of Vanadium Ore

Table 4-22: Summary of Works 1972 to 1973

Table 4-23: Summary of Gamma Logging 1972 to 1973

Table 4-24: FAR’s Drilling Programme Summary

Table 4-25: Proposed Exploration Holes for OB1

Table 4-26: Proposed Exploration Holes for OB2

Table 4-27: Proposed Exploration Holes for OB3 & OB4

Table 4-28: FAR Drilling Results – 2010 to 2011

Table 4-29: Quality Control Results Intertek Laboratory

Table 4-30: Sample composites for REE analysis

Table 4-31: REE Results Ultra Trace laboratory

Table 4-32: REE Results Intertek laboratory

Table 4-33: Karaganda REE Analyses – Based on Vanadium Pulp Sample Composites

Table 4-34: Rare Earth Element Grades 1993

Table 4-35: Historical Rock Bulk Densities Used for Ore Reserves

Table 4-36: Bulk Density Results

Table 4-37: Summary Statistics for Surface Trench Data – 1947 (Mean Length 0.5 m)

Table 4-38: Drillholes with % Core Recoveries and V₂O₅ Grades - 1973

Table 4-39: FAR Drilling Sample Analysis Summary Stats – OB1 to OB3

Table 4-40: Summary Analysis Stats - Surface Trench Samples – 1947

Table 4-41: Drillholes 1973 V₂O₅ grades and OBs

Table 4-42: Summary statistics 1973 drillholes OB1 - 106 samples

Table 4-43: Summary statistics 1973 drillholes OB2 - 83 samples

Table 4-44: Summary statistics 1973 drillholes OB3 - 52 samples
Table 4-45: Summary statistics all 1973 drillholes - 241 samples .. 136
Table 4-46: 1947 V₂O₅ Oxide Trench Results Split on Sub-Units within Vanadium Layer 139
Table 4-47: Quantile Table of 1973 Drillhole Data from the Primary Vanadium Layer OB1 139
Table 4-48: Quantile Table of 1947 Surface Trench Data from the Oxide Vanadium Layer 140
Table 4-49: OB1 Composite Data Statistics Split on Laboratory Prior to Compositing 141
Table 4-50: FAR Composite Data Stats Split on Laboratory – 2m Lengths 141
Table 4-51: Summary Data .. 142
Table 4-52: Summary Statistics after Top-Cutting U₃O₈ (Prior to Compositing) 142
Table 4-53: Summary data after compositing .. 142
Table 4-54: Length Statistics for Uncomposited and Composited Samples 143
Table 4-55: V₂O₅ NE limb variogram parameters ... 149
Table 4-56: V₂O₅ SW limb variogram parameters ... 149
Table 4-57: Carbon NE limb variogram parameters .. 150
Table 4-58: Spatial definition of OB1 block model (m) (oxide and primary) 152
Table 4-59: Actual dimensions of OB1 block model (m) – oxide .. 152
Table 4-60: Actual dimensions of OB1 block model (m) – primary 152
Table 4-61: Showing overall mean grades for OB1 JORC “indicated” 160
Table 4-62: Schedule of JORC Mineral Resources ... 164
Table 4-63: OB1 Resource (Primary Mineralisation) .. 166
Table 4-64: OB1 Resource (Oxide Mineralisation) ... 168
Table 4-65: JORC-based Exploration Target (JORC 2004 guidelines) 170
Table 4-66: JORC-based Exploration Target (JORC 2004 guidelines) - By-products applied to all Ore Bodies 2 to 5 ... 171
Table 4-67: JORC-based Exploration Target (JORC 2004 guidelines) Oxide Cap 171
Table 4-68: 2014 GKZ Reserve Summary ... 173
Table 5-1: Proposed New Capital Plant and Equipment for Mining 180
Table 6-1: Metallurgical Patents .. 188
Table 7-1: Chemical Composition of Primary Ore ... 190
Table 7-2: Optimum Regimes of Decarbonization ... 194
Table 7-3: Optimum Regimes of Autoclave Leaching ... 197
Table 7-4: Grade of Metavanadate and Impurities Produced from Operations 203
Table 7-5: Physico-Chemical Indices According to GOST 4329-77 ... 207
Table 10-1: Currency Exchange Rate .. 219
Table 10-2: Capital costs for expansion of current mining operations .. 220
Table 10-3: LOM Operating Costs ... 223
Table 10-4: Operating Margins ... 224
Table 10-5: Cash Flow Assumptions (current processing expansion) ... 224
Table 10-6: Main Aspects of Cash Flow Model (processing expansion) 226
Table 10-7: Main Aspects of Cash Flow Model (Phases 1 & 2 only) ... 227
Table 10-8: Sensitivities (Expansion of current processing) ... 228
Table 10-9: Sensitivities (Phases 1 & 2 only) ... 228
Table 12-1: Industrial Testing 1998 to 2006 .. 254
Table 12-2: Research and Development Balausa ... 254
LIST OF FIGURES

Figure 2-1: FAR Group Structure ... 24
Figure 2-2: Existing Management Structure ... 25
Figure 3-1: Location of the Balasausqandiq Deposit in Southern Kazakhstan ... 31
Figure 3-2: Location of Balasausqandiq in the Schieliiskiy Region of the Kyzylorda Oblast 32
Figure 3-3: Access Road from Shieli .. 33
Figure 3-4: Typical Topography at the Current Operation .. 34
Figure 3-5: Aerial Image of the Site Boundary (yellow) and Mining Allotment ... 37
Figure 4-1: Example of a Reserve Block for NE Limb OB 1 - 1945 (Cross-Section Between Profiles 1 and 2) ... 50
Figure 4-2: Showing Reserve Blocks for NE Limb of OB1 - 1973 .. 54
Figure 4-3: Tectonic Map of Kazakhstan ... 60
Figure 4-4: Global Reconstruction of Mid-Ordovician Continents, as Based on Distribution of some Characteristic Brachiopod Genera by Popov et al 2009 and modified by GMR 2013 61
Figure 4-5: Main Structural Elements Showing the Location of the Balasausqandiq Deposit 63
Figure 4-6: Vertical Section of the Chu Sarysu Basin (Figure 4-5 Shows Section Line) of Main Stratigraphic Units ... 63
Figure 4-7: Diagrammatic Cross Section showing relationship of Karatau Mountains with adjacent intermontane basins .. 64
Figure 4-8: Geology of the Karatau Mountains .. 64
Figure 4-9: Balausa geological features overlaid on Google earth map .. 66
Figure 4-10: Lower Contact of OB1 (NE Limb OB1) – Tape Extended 1m ... 76
Figure 4-11: Upper Contact OB1 (NE Limb) Looking SE .. 77
Figure 4-12: Vanadium Geochemical Enrichment Processes in Marine Basin of Deposition 81
Figure 4-13: Drillhole Core from B213 at 121m .. 85
Figure 4-14: Photo at profile 1 looking SE along NE limb of Orebody 1 ... 88
Figure 4-15: 3D DM Model – Same View as with Trench 20 & 33 at Surface .. 89
Figure 4-16: Unexpected Vanadium Intersected at 100m Depth - Centre of OB2 Syncline 95
Figure 4-17: Cutting Core ... 97
Figure 4-18: Sample Preparation – Crushing Equipment 97
Figure 4-19: Sample Preparation Flow Diagram 98
Figure 4-20: FAR v Alex Stewart laboratory V₂O₅% – oxide open pit samples .. 100
Figure 4-21: Balusa mean V₂O₅% 0.73 % and Australia mean 0.93 % (oxide) .. 101
Figure 4-22: V₂O₅ – Ultra Trace (0.67 %) + QA/QC repeats at Intertek (0.67 %) ... 103
Figure 4-23: Scatterplot V₂O₅ Intertek (0.65 %) v Karaganda lab (0.63 %) .. 104
Figure 4-24: Scatterplot Karaganda v Balusa XRF V₂O₅ 105
Figure 4-25: Scatterplot V₂O₅ Balusa XRF (0.84 %) v Kozlov (1.01 %) .. 106
Figure 4-26: Scatterplot V₂O₅ - Intertek (0.64 %) v Kozlov lab (0.85 %) .. 107
Figure 4-27: Scatterplot Carbon - Intertek (11.73 %) v Kozlov lab (14.36 %) .. 108
Figure 4-28: Scatterplot V₂O₅ Balusa lab (0.84 %) v Balusa XRF (0.70 %) .. 109
Figure 4-29: Scatterplot V₂O₅ Intertek (0.65 %) v Balusa lab (0.81 %) .. 109
Figure 4-30: Yttrium and V₂O₅% levels ... 114
Figure 4-31: Bulk density 2.13 (true density 2.25) V₂O₅% 0.5 and carbon 22.7 % DSG9 119
Figure 4-32: Bulk density 2.46, V₂O₅% 0.75 and carbon 23.0 % (no true density) DSG15 120
Figure 4-33: Bulk density 2.57 (true density 2.57) V₂O₅% 0.2 and no carbon analysis (in FW waste zone) DSG19 ... 120
Figure 4-34: Bulk Density versus Carbon Content - Scatterplot 121
Figure 4-35: True Density Mean versus Carbon Content 122
Figure 4-36: Carbon Content versus V₂O₅ – Correlation Coefficient 0.38 .. 122
Figure 4-37: Carbon content versus V₂O₅ with only Intertek lab results 123
Figure 4-38: Scatterplot - core recovery trends with drillhole ID 127
Figure 4-39: Profile 2.5 Showing Interpretation & Modelling Details of Orebody Syncline -OB1 131
Figure 4-40: Perspective view looking north – showing string elements 132
Figure 4-41: Perspective view showing completed solid wireframe model – OB1 .. 132
Figure 4-42: V₂O₅ Trench & Drillhole Histograms and Log Probability Plots Soviet-Era 137
Figure 4-43: Combined probability plot – trench & drillhole V₂O₅% data .. 138
Figure 4-44: OB1 Uncomposited Sample Lengths .. 143
Figure 4-45: OB1 Composited Sample Lengths ... 144
Figure 4-46: OB1 V₂O₅ Histogram & Log Probability Plots Uncomposited Samples 144
Figure 4-47: OB1 V₂O₅ Histogram & Log Probability Plots 2m Composites 145
Figure 4-48: Carbon Histogram & Log Probability Plots OB1 ... 145
Figure 4-49: MoO₃ Histogram & Log Probability Plots OB1 ... 146
Figure 4-50: U₃O₈ Histogram & Log Probability Plots (top-cut <0.1) n=217 146
Figure 4-51: Experimental variogram for oxide trench data – OB1 147
Figure 4-52: NE limb variograms – basic models ... 149
Figure 4-53: SW limb variograms for V₂O₅ ... 150
Figure 4-54: Carbon variograms – NE limb only ... 151
Figure 4-55: Perspective view along part of OB1 showing wireframe slice used for splitting block model into separate limbs for grade estimation .. 153
Figure 4-56: 3D perspective looking northerly and showing OB1 model with true dip directions 155
Figure 4-57: Illustration of “column”, “row” and “level” used for the swath graphs – 3D block model 158
Figure 4-58: Horizontal swath plot - 310mRL to 590mRL in 20m increments (x14 levels 2 to 15) 158
Figure 4-59: Vertical column swath plot 9450E to 372650E in 200m increments (x16) 159
Figure 4-60: Vertical row swath plot (931960N to 934760N) in 200m increments x14 159
Figure 4-61: Horizontal swath plot Carbon 330mRL to 570mRL in 20m increments (x12 levels - 3 to 14) ... 160
Figure 4-62: Vertical column swath plot Carbon (369450E to 372650E in 200m increments) (x16) .. 161
Figure 4-63: Vertical row swath plot Carbon (931960N to 934760N in 200m increments x14) 161
Figure 4-64: SW-NE section of model (Profile 3) showing drillhole grades and estimated block grades .. 162
Figure 4-65: Grade tonnage JORC Indicated .. 167
Figure 4-66: Grade tonnage JORC Inferred .. 167
Figure 4-67: Grade tonnage JORC Combined .. 168
Figure 4-68: Historical surface outline of orebodies – based on 1947 map 169
Figure 5-1: Current Status of New Pit ... 175
Figure 5-2: Current Design for New Pit Ore Body 1 ... 178
Figure 5-3: Cross-section 203 of New Pit Design Ore Body 1 ... 178
Figure 7-1: Process Block Diagram .. 193
Figure 7-2: Mill and Gravity Classifier .. 194
Figure 7-3: Thickener ... 195
Figure 7-4: Disc Filter ... 196
Figure 7-5: Autoclave ... 197
Figure 7-6: Adsorption Circuit .. 198
Figure 7-7: Process block flow diagram .. 208
Figure 8-1: Process Building with Office Block in Foreground ... 210
Figure 8-2: Diesel Storage ... 211
Figure 9-1: Fuel Drums (Foreground) and Tanks (Background) within Mine Waste Bund 217
NOMENCLATURE

The following abbreviations have been used in this document.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMV</td>
<td>Ammonium Metavanadate</td>
</tr>
<tr>
<td>Balausa</td>
<td>The Balausa Vanadium Project that is the subject of this report</td>
</tr>
<tr>
<td>BaV$_2$O$_4$</td>
<td>Phengite</td>
</tr>
<tr>
<td>DCF</td>
<td>Discounted Cash Flow</td>
</tr>
<tr>
<td>DM</td>
<td>Datamine™</td>
</tr>
<tr>
<td>ESIA</td>
<td>Environment and Social Impact Assessment</td>
</tr>
<tr>
<td>FAR</td>
<td>Ferro Alloy Resources Limited</td>
</tr>
<tr>
<td>FPO</td>
<td>Financial Services and Markets Act 2000 (Financial Promotion) Order 2005</td>
</tr>
<tr>
<td>GBM</td>
<td>GBM Minerals Engineering Consultants Limited</td>
</tr>
<tr>
<td>GKZ</td>
<td>Kazakh State Reserves Committee</td>
</tr>
<tr>
<td>GMR</td>
<td>Geo Mineral Resources Limited</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IPD</td>
<td>Inverse Power Distance</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>JORC</td>
<td>Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves</td>
</tr>
<tr>
<td>MVA</td>
<td>Meta-Vanadate Crystal Slurry</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NSL</td>
<td>Noise Sensitive Location</td>
</tr>
<tr>
<td>OB1</td>
<td>Ore Body 1</td>
</tr>
<tr>
<td>OB2</td>
<td>Ore Body 2</td>
</tr>
<tr>
<td>OB3</td>
<td>Ore Body 3</td>
</tr>
<tr>
<td>OB4</td>
<td>Ore Body 4</td>
</tr>
<tr>
<td>OB5</td>
<td>Ore Body 5</td>
</tr>
<tr>
<td>OK</td>
<td>Ordinary kriging</td>
</tr>
<tr>
<td>OVOS</td>
<td>Kazakh equivalent to ESIA</td>
</tr>
<tr>
<td>SEE</td>
<td>State Ecological Expertise</td>
</tr>
<tr>
<td>SER</td>
<td>State Environmental Review</td>
</tr>
<tr>
<td>TFB</td>
<td>TOO Firma Balausa</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>V$_2$O$_5$</td>
<td>Vanadium Oxide</td>
</tr>
<tr>
<td>V$_2$S$_4$</td>
<td>Patronite</td>
</tr>
<tr>
<td>VNIIKHT</td>
<td>An approved design institute which carries out metallurgical testwork.</td>
</tr>
</tbody>
</table>
SECTION 1 SUMMARY

1.1 PROJECT BACKGROUND

Ferro Alloy Resources Limited (FAR) commissioned GBM Minerals Engineering Consultants Limited (GBM) to prepare a Competent Person’s Report on the Balausa vanadium operations and development projects in the Shieli district, Kzylorda oblast, Kazakhstan. Geo Mineral Resources Limited (GMR) was engaged to produce a mineral resource report, according to acceptable international standards.

FAR’s principal operating subsidiary, TOO Firma Balausa (TFB) carries on the current processing operation and holds the development and mining rights to the Balasausqandiq vanadium deposit via a subsoil-use contract. In this report the terms “Company” or “Group” refer to FAR or TFB or both as the context requires.

The licenced area forms a large part of the Balasausqandiq vanadium deposit. This deposit is based on a geological resource which has progressively been delineated by a number of exploration phases since its discovery in 1940 by Soviet era geo-scientists. More recently, FAR have carried out further exploration drilling, trial open-pit mining operations and pilot plant optimisation studies using alternate metallurgical and mineral process treatment technologies.

Currently, the Company is operating a processing plant treating bought-in concentrates with a production capability of around 200 tonnes per annum of vanadium pentoxide in the form of ammonium metavanadate (AMV). This plant was based on the former pilot plant, suitably adapted to treat concentrates and thereby increased output to a semi-commercial level. Having reached a steady state of operations and thereby proven the operating effectiveness, the Company now plans to increase output approximately ten times by doubling the size of the building, purchasing suitable additional equipment and improving infrastructure at a total capital cost of some $12m.

In parallel, FAR intend to develop the Balasausqandiq mine and associated processing plant using a phased approach, with a 1 Mtpa processing facility being constructed initially (“Phase 1”), followed by a 4 Mtpa expansion (“Phase 2”).

This Competent Person’s Report provides an assessment of the proposed projects, including details of the current mineral resource, mining engineering, metallurgy, mineral processing, an estimation of capital and operating costs and financial analyses.

Note that within this Competent Person’s Report, the term “ore” is not used in the strict JORC definition of the term as a “mineable reserve”, but instead indicates potentially mineable material, and is used as it is a direct translation from the former Soviet-era interpretation of the word in historical documents related to the project. Similarly, the term “reserve” is not used in the JORC defined sense of the word and is instead used in the context of the Kazakh State Reserves Committee (GKZ) system of classifying mineral deposits.
1.2 GEOLOGY

There is an extensive history of geological exploration, especially during the former Soviet-era, since the vanadium was first discovered in 1940. However, as part of this project, research into the expansive complex geological processes that affected the Balasausqandiq deposit, from 1,000 million years ago to 1.5 million years ago, especially in the field of geo-tectonics, has provided a sound basis for supporting the assessment and modelling of this deposit and has allowed a much higher confidence level in the results. This deposit has geological characteristics in common with vanadium deposits in South China, when in primordial times, the Karatau mountains were juxtaposed within the same supercontinent.

The stratiform vanadium layer is associated with five very large orebodies and their surface expression can be traced for about 40 km. These orebodies are mostly confined to deep synclinal folds, where the primary carbonaceous vanadium rocks at depth are protected from weathering and oxidation processes. From historical data and from FAR's drilling results, the global grades within these orebodies are relatively similar, and this uniformity is testament to the broad stable conditions during mineralogical deposition in a marine basin some 510 million years ago (mid-Cambrian).

1.3 RESOURCES

Potentially, the primary resource is huge, as expressed by the surface continuity of the vanadium mineralisation along strike. The reflection at depth of such observable surface mineralisation has been confirmed by FAR's drilling of Ore Body 1 (OB1) and also confirmed from the more limited drilling of Ore Body 2 (OB2) and Ore Body 3 (OB3). Currently, based on the OB1 JORC resource, plus JORC-based Exploration Targets for OB2 to OB5, a total vanadium JORC resource of over 100 million tonnes is considered to be a rational prediction.

Table 1-1 provides details of the OB1 JORC resource, for both vanadium and by-products, while the Exploration Targets are summarised in Table 1-2 and Table 1-3.
Table 1-1: Schedule of Mineral Resources

<table>
<thead>
<tr>
<th>JORC Class</th>
<th>JORC Vanadium Resource OB1</th>
<th>By-Products OB1 (primary ore only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JORC indicated</td>
<td>JORC inferred</td>
</tr>
<tr>
<td></td>
<td>C% Mean</td>
<td>Tonnes [m]</td>
</tr>
<tr>
<td>Indicated</td>
<td>0.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Inferred</td>
<td>0.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Combined</td>
<td>0.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Oxide cap inferred</td>
<td>0.0</td>
<td>0.89</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Table 1-2: JORC Based Exploration Target (JORC 2004 Guidelines)

<table>
<thead>
<tr>
<th>Orebodies 2 to 5</th>
<th>Strike Length (km)</th>
<th>Tonnes [m]</th>
<th>V_2O_5 Grade Range [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>Primary Zone</td>
<td>20.9</td>
<td>73</td>
<td>98</td>
</tr>
<tr>
<td>Oxide Zone</td>
<td></td>
<td>4.25</td>
<td>5.75</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td>77.3</td>
<td>103.8</td>
</tr>
</tbody>
</table>

Table 1-3: JORC Based Exploration Target (JORC 2004 Guidelines) - By-Products applied to Ore Bodies 2 to 5 (Primary Zone Only)

<table>
<thead>
<tr>
<th>Target</th>
<th>Global Grades based on OB1</th>
<th>Grade Range ± 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From</td>
</tr>
<tr>
<td>Carbon</td>
<td>13.58 %</td>
<td>12.9</td>
</tr>
<tr>
<td>MoO₃</td>
<td>0.030 %</td>
<td>0.029</td>
</tr>
<tr>
<td>U₃O₈</td>
<td>0.009 %</td>
<td>0.009</td>
</tr>
<tr>
<td>REM</td>
<td>335 ppm</td>
<td>318</td>
</tr>
<tr>
<td>Total Tonnes (millions)</td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

A GKZ reserve of 70 M tonnes was confirmed in 2014 as shown in Table 1-4. This GKZ reserve is used as the basis of mine planning and financial analysis for this Competent Person’s Report except that the lower ore grade set out in the JORC resource estimate has been applied to the technical parameters and financial model.

Table 1-4: 2014 GKZ Reserve Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Reserve [1000 t]</th>
<th>Mean grade V_2O_5 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>832</td>
<td>1.00</td>
</tr>
<tr>
<td>C1</td>
<td>15,649</td>
<td>0.75</td>
</tr>
<tr>
<td>C2</td>
<td>54,366</td>
<td>0.74</td>
</tr>
<tr>
<td>B+C1+C2</td>
<td>70,847</td>
<td></td>
</tr>
</tbody>
</table>

1.4 METALLURGY AND MINERAL PROCESSING

The metallurgical pilot plant installed at the project site shows that the vanadium mineralisation is amenable to conventional comminution and autoclave processing techniques to produce a suite of saleable products. The pilot plant testwork shows a mineral recovery of over 90%. The mineral process plant will use conventional industrial chemistry processes, standard equipment and machinery.
Run of mine ore will be crushed, milled and classified before thickening. The thickened material is decarbonized in an acid solution and re-thickened and filtered. The solid material is leached in autoclaves to produce a carbon silica by-product, which is then washed and dewatered.

The solution from the decarbonization stage contains the main product elements. The recovery of vanadium, uranium, molybdenum and rare earths is undertaken using three separate adsorption circuits. In each stage the target element is preferentially adsorbed onto ion-exchange resin, allowing the solution to flow on to the next stage. The target elements are desorbed from the loaded resins periodically and precipitated out of solution before drying and packaging.

The proposed operational mineral process plant will produce a suite of saleable products, including Vanadium, Carbon Black, Rare Earth Elements (“REE”) and others as defined in this report.

Following completion of the test programme, the pilot plant was adapted to treat concentrates and spent catalysts. This operation does not require several sections of the former pilot plant including the crushing and milling, autoclave leaching, and the by-product recovery sections, but the production process is otherwise similar and the output of vanadium is higher.

1.5 MINING OPERATION

Small scale mining is being carried on at a rate of 15,000 tonnes per year from open pit and the ore is currently stockpiled. Subject to demand, some of the waste from this mining is crushed and sold as gravel for road-building and construction. The future mining operations will be on a much larger scale but will use similar methods, a conventional open pit employing standard equipment for drill, blast, load and haulage of the material to the process plant from the open pit.

The equipment used will be western standard equipment augmented by regional manufacturers where appropriate. Industry standard grade control techniques will be used to ensure the grade of the material for processing is in accordance with the business plan.

1.6 INFRASTRUCTURE

The current operations and project benefit from a significant amount of regional infrastructure, including high voltage electrical lines nearby, well-made access roads, local telecommunications and a regional railway. There is also site specific infrastructure developed for the purposes of the initial trial mining and mineral processing operations.

The site has a reliable water supply, labour force accommodation block, engineering workshops, welfare facilities, an office and telecommunication facilities, which are suitable and sufficient for the
current operation and typical for the region. All facilities are in accordance with local regulatory requirements.

The proposed operations will require connection to the adjacent High Voltage 110 kV power line, enhanced electrical reticulation, a new accommodation block, new railway siding facilities in Shieli and the existing infrastructure onsite will be augmented and refurbished to a higher operational condition.

1.7 ENVIRONMENTAL

The site is situated in a plain landscape, typically desert type of raised and lowered steppe. The climate in the area is typically sharp continental, with a hot, dry and prolonged summer with temperatures commonly exceeding 40 °C. The winter is relatively short with little snow. Ground frost permeation during the winter is approximately 0.3 to 0.4 m, the coldest month being January, with an average temperature of -6.9°C, but capable of reaching as low as -25°C.

The winds in the area are strong and frequent with a prevailing north, northeast and northwest direction. Annual precipitation in the northern slopes of the Great Karatau Range total approximately 151 mm.

There no known designated habitat area nearby. The site is in full compliance with the national OVOS scheme for environmental stewardship.

1.8 LOGISTICS

The products from the operation are of high value and relatively low in volume so transport to customers is not difficult or expensive by either truck or rail. The most usual routes will be by truck to the railway at Shieli, 70 km from the plant, where there is a railway station along the main East-West road and rail transit linking the Russian Baltic, through Kyzylorda, Shymkent and Almaty, into China and on to the East coast, or by truck to the port of Riga from where it can be shipped. There is therefore good access to Europe, Russia and China as well as the local region.

Sales have been made in the past to Russia and China, but more recently to a UK customer for onward shipment to Taiwan. This latest customer has indicated its willingness to take up to 100% of output from the expanded current processing operations for use in speciality chemical production. In future, when the 1 Mtpa mine output is achieved, the majority of output will be sold in the form of ferro-vanadium to steel producers or in the form of vanadium electrolyte for use in vanadium flow batteries.
1.9 FINANCIAL ANALYSES

GBM has audited the FAR cash flow models and, discounting at a 10% discount rate and using a long term vanadium price forecast of US$6.00 per lb, the combined businesses have an NPV (post tax) of USD 1.4 billion. The business IRR (post tax, discounted) is 69%.

The main aspects of the cash flow models in US dollars are detailed in Table 1-5.

<table>
<thead>
<tr>
<th>Table 1-5: Main Aspects of Cash Flow Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Combined projects:</td>
</tr>
<tr>
<td>Base case post tax asset IRR</td>
</tr>
<tr>
<td>Base case post tax NPV (10 %)</td>
</tr>
<tr>
<td>• NPV (10%) / IRR (processing expansion only)</td>
</tr>
<tr>
<td>• NPV (10%) /IRR (phases 1 and 2 mining and processing)</td>
</tr>
<tr>
<td>Expansion of current processing operation</td>
</tr>
<tr>
<td>Capital costs including working capital and contingency</td>
</tr>
<tr>
<td>Concentrate treated per annum</td>
</tr>
<tr>
<td>Annual output V2O5</td>
</tr>
<tr>
<td>Annual revenue</td>
</tr>
<tr>
<td>Annual costs</td>
</tr>
<tr>
<td>Net operating cash flow after tax</td>
</tr>
<tr>
<td>Phase 1 – 1 Mtpa mining and processing</td>
</tr>
<tr>
<td>Capital costs including working capital and contingency</td>
</tr>
<tr>
<td>Ore treated per annum</td>
</tr>
<tr>
<td>Annual output V2O5 (additional to above)</td>
</tr>
<tr>
<td>Annual revenue</td>
</tr>
<tr>
<td>Annual costs including royalty</td>
</tr>
<tr>
<td>Annual operating cash generation after tax</td>
</tr>
<tr>
<td>Phase 2 – additional 3 Mtpa mining and processing</td>
</tr>
<tr>
<td>Capital costs including working capital and contingency</td>
</tr>
<tr>
<td>Ore treated per annum (total incl. Phase 1)</td>
</tr>
<tr>
<td>Annual output V2O5 (total incl. Phase 1)</td>
</tr>
<tr>
<td>Annual revenue (total incl. Phase 1)</td>
</tr>
<tr>
<td>Annual costs including royalty (total incl. Phase 1)</td>
</tr>
<tr>
<td>Annual operating cash generation after tax (total incl. Phase 1)</td>
</tr>
</tbody>
</table>
The NPV and IRR figures assume that the expansion of current operations will be constructed in 2017 and will start up in 2018, construction of Phase 1 will start in 2018 with start-up in late 2019, and construction of Phase 2 will start in January 2021 with start-up in second half of 2022.

Within this cash flow model it is assumed that cash generated is kept within the company and used to fund the expansions to 1 Mtpa to 4 Mtpa. Funding for this programme of expansions is expected to be in three phases, approximately as follows:

<table>
<thead>
<tr>
<th>Capital costs (US$)</th>
<th>Expansion of current processing</th>
<th>Phase 1 (1Mtpa)</th>
<th>Phase 2 (4 Mtpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial equity funding 2017</td>
<td>$12m</td>
<td>$3m</td>
<td>-</td>
</tr>
<tr>
<td>Equity funding 2018</td>
<td></td>
<td>$20m</td>
<td></td>
</tr>
<tr>
<td>Debt or bond 2018</td>
<td></td>
<td>$55m</td>
<td>-</td>
</tr>
<tr>
<td>Debt or bond 2020/2021</td>
<td></td>
<td></td>
<td>$80m</td>
</tr>
<tr>
<td>Funded from retained earnings after interest</td>
<td>$22m</td>
<td>$140m</td>
<td></td>
</tr>
<tr>
<td>Total capital requirement</td>
<td>$12m</td>
<td>$100m</td>
<td>$225m</td>
</tr>
</tbody>
</table>